SIGNIFICANCE OF VDR GENE POLYMORPHISM AND THROMBIBILIA IN THE DEVELOPMENT OF ASESPTIC NECROSIS OF THE FEMORAL HEAD ASSOCIATED WITH COVID-19
PDF

Keywords

Aseptic necrosis of the femoral head, rs1544410, rs1799963, rs6025 polymorphism, hypercoagulopathy

Abstract

It is known that the incidence of aseptic necrosis of the femoral head increased significantly during the COVID-19 pandemic. In the development of the disease, the use of corticosteroid drugs in the acute phase of COVID-19, chronic hypercoagulopathy caused by COVID-19, lifestyle (negative habits) of patients, and genetic predisposition are of great importance. It is known that impaired blood microcirculation is an important pathogenetic factor in the development of aseptic necrosis. Therefore, in patients with Thrombophilic genes were calculated by aseptic necrosis, polymorphisms of the MTHFR A1298C gene (rs 1801131), C677T (rs 1801133) and the MTR A2756G gene (rs1805087), the MTRR A66G gene (rs1801394) in the Uzbek population and these genes, respectively, C (by determining the importance of minor alleles rs 1801131), T (rs 1801133), G (rs1805087) and G (rs1801394) in the development of SSBON associated with COVID-19, selecting those with a predisposition to developing the disease and studying the syntropic effects of additional exogenous factors (in particular, negative habits), through special preventive and therapeutic measures, it is possible to reduce the incidence of COVID-19-related SSBON disease and alleviate the severity of the disease.

PDF

References

Gou WL, Lu Q, Wang X, Wang Y, Peng J, Lu SB. Key pathway to prevent the collapse of femoral head in osteonecrosis. Eur Rev Med Pharmacol Sci. 2015;19(15):2766–2774.

Petek D, Hannouche D, Suva D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Rev. 2019;4(3):85–97.

Aaron RK, Gray R. Osteonecrosis: etiology, natural history, pathophysiology, and diagnosis. In: Callaghan JJ, Rosenberg AG, Rubash HE, editors. The adult hip. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 465–76

Atsumi T. Bone arteriography of the femoral head of humans in normal and pathological conditions. In: Schoutens A et al., editors. Bone circulation and vascularization in normal and pathological conditions. US: Springer; 1993. p. 293–9.

Kenzora JE GM, et al. Osteonecrosis. In: Kelly WN HE, Ruddy S, et al., editors. Textbook of rheumatology. Philadelphia: WB Saunders; 1981. pp. 1755–82.

Shah K, Racine J, Jones L, et al. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med 2015;8:201–9. 4

Cui Q, Botchwey E. Treatment of precollapse osteonecrosis using stem cells and growth factors. Clin Orthop Relat Res 2011;469:2665–9.

James J, Steijn-Myagkaya GL. Death of osteocytes. Electron microscopy after in vitro ischaemia. J Bone Joint Surg (Br) 1986;68(4):620–4.

Jiang Y, Rubin L, Peng T, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;18(2):459-472. Published 2022 Jan 1. doi:10.7150/ijbs.59272

Zhang Q, L V J, Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head. J Int Med Res. 2018 Jun;46(6):2141-2148. doi: 10.1177/0300060517700299. Epub 2017 May 1. PMID: 28459353; PMCID: PMC6023042.

Matsuo K et al. Influence of alcohol intake, cigarette smoking, and occupational status on idiopathic osteonecrosis of the femoral head. Clin Orthop Relat Res. 1988;234:115–23

Guerado E, Caso E: The physiopathology of avascular necrosis of the femoral head: An update. Injury 2016;47:S16-S26.

Choi HR, Steinberg ME, E YC: Osteonecrosis of the femoral head: Diagnosis and classification systems. Curr Rev Musculoskelet Med 2015;8:210-220.

Mont MA, Pivec R, Banerjee S, Issa K, Elmallah RK, Jones LC: High-dose corticosteroid use and risk of hip osteonecrosis: Meta-analysis and systematic literature review. J Arthroplast 2015;30:1506-1512.e5

Jiang Y, Rubin L, Peng T, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;18(2):459-472. Published 2022 Jan 1. doi:10.7150/ijbs.59272

Herrmann M, et al. Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin. Chem. 2005;51:2348–2353. doi: 10.1373/clinchem.2005.053363.

Stühlinger MC, et al. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104:2569–2575. doi: 10.1161/hc4601.098514.

Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J. Thromb. Haemost. 2005;3:1646–1654. doi: 10.1111/j.1538-7836.2005.01364.x.

Ganesh B, Rajakumar T, Malathi M, et al. Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS: An updated overview of current knowledge and future perspectives. Clin Epidemiol Glob Health. 2021;10:100694. doi:10.1016/j.cegh.2020.100694.

Orooji Y, Sohrabi H, Hemmat N, et al. An Overview on SARS-CoV-2 (COVID-19) and Other Human Coronaviruses and Their Detection Capability via Amplification Assay, Chemical Sensing, Biosensing, Immunosensing, and Clinical Assays. Nanomicro Lett. 2021;13(1):18. doi:10.1007/s40820-020-00533-y

Mir, T., Almas, T., Kaur, J., Faisaluddin, M., Song, D., Ullah, W., Mamtani, S., Rauf, H., Yadav, S., Latchana, S., Michaelson, N. M., Connerney, M., & Sattar, Y. (2021). Coronavirus disease 2019 (COVID-19): Multisystem review of pathophysiology. Annals of medicine and surgery (2012), 69, 102745. https://doi.org/10.1016/j.amsu.2021.102745

Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin. 2020;35(3):266-271. doi:10.1007/s12250-020-00207-4

Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Bioinform Biol Insights. 2021;15:11779322211025876. Published 2021 Jun 22. doi:10.1177/11779322211025876

Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci. 2022;65(2):280-294. doi:10.1007/s11427-021-1964-4

Niedźwiedzka-Rystwej P, Majchrzak A, Kurkowska S, et al. Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. Int J Mol Sci. 2022;23(9):4545. Published 2022 Apr 20. doi:10.3390/ijms23094545

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet, 395 (10223) (2020), pp. 497-506, 10.1016/S0140-6736(20)30183-5

Zanza C, Romenskaya T, Manetti AC, et al. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (Kaunas). 2022;58(2):144. Published 2022 Jan 18. doi:10.3390/medicina58020144

Jiang Y, Rubin L, Peng T, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;18(2):459-472. Published 2022 Jan 1. doi:10.7150/ijbs.59272

Young R.E., Thompson R.D., Larbi K.Y., La M., Roberts C.E., Shapiro S.D., Perretti M., Nourshargh S. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. Journal. 2004;172:4493–4502

Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50.

Kayagaki N., Stowe I. B., Lee B. L., O’rourke K., Anderson K., Warming S., et al. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 666–671. 10.1038/nature15541

Zhang Q., VJ L., Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head. J Int Med Res. 2018;46(6):2141.

Zhang Q, L V J, Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head. J Int Med Res. 2018 Jun;46(6):2141-2148. doi: 10.1177/0300060517700299. Epub 2017 May 1. PMID: 28459353; PMCID: PMC6023042.

Glueck CJ, McMahon RE, Bouquot JE, Stroop D, Tracy T, Wang P, Rabinovich B. Thrombophilia, hyperfibrinolysis, and alveolar osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81:557–566.

Zalavras CG, Vartholmatos G, Dokou E, Malizos KN. Genetic background of osteonecrosis: associated with thrombophilic mutations? Clin Orthop Relat Res. 2004;422:251–255.

Zalavras CG, Vartholomatos G, Dokou E, Malizos KN. Genetic background of osteonecrosis: associated with thrombophilic mutations? Clin Orthop Relat Res. 2004 May;(422):251-5. PMID: 15187864.

Peng KT, Huang KC, Huang TW, Lee YS, Hsu WH, Hsu RW, Ueng SW, Lee MS. Single nucleotide polymorphisms other than factor V Leiden are associated with coagulopathy and osteonecrosis of the femoral head in Chinese patients. PLoS One. 2014 Aug 13;9(8):e104461. doi: 10.1371/journal.pone.0104461. PMID: 25119470; PMCID: PMC4131902.

Zalavras CG, Vartholomatos G, Dokou E, Malizos KN (2004) Genetic background of osteonecrosis: associated with thrombophilic mutations? Clin Orthop 422: 251–255.

Bjorkeman A, Burtscher IM, Svensson PJ, Hillarp A, Besjakov J, Benoni G. Factor V Leiden and the prothrombin 20210A gene mutation and osteonecrosis of the knee. Arch Orthop Trauma Surg. 2005;125:51–5.

Segers K, Dahlbäck B, Nicolaes GA (2007) Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost 98: 530–542.